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概要
本研究では、空間動画像データベース (SAI-DB)に対し、

テキストによる高精度かつ高速なシーン検索を実現する
ため、Coarse-to-Fine型セマンティック検索システムを提
案・実装した。具体的には、Coarseステップでは、ユーザ
のシーンを記述したクエリ文と、画像から生成された説明
文をそれぞれベクトルに変換し、類似度を計算して候補を
絞る。そして、Fineステップにおいて、GPT-4oを用いた
VQAを利用することで、インタラクティブにクエリと一
致する画像を取得できる。評価実験として、新宿駅付近で
撮影されたシーン動画像に基づいてタスクを設定し、提案
システムの有効性を定性的に確認した。

1. はじめに
屋内外のシーン動画像データを収集する技術や機器の発

達、そしてオープンデータの増加に伴い、自動運転、XR*1、
都市計画やモニタリングの分野でシーン動画像データが活
用され始めている [1]。例えば、膨大なシーン動画像を深層
学習を用いて処理することにより、土地分類や人流計測、
市街状況の把握などが可能になる [11]。現状では、物体検
出や意味的領域分割を通じてシーン画像のタグ付けやクラ
スタリングを試みる研究が多い [8]。しかしながら、実際
の屋内外のシーン動画像にはさらに豊かな情報が含まれて
おり、タグ付けやクラスタリングの結果として得られる限
られた情報とは差異がある。現在の技術で「物体が存在す
るかどうか」や「どの領域にそれが存在するか」といった
単純化された情報は抽出できるものの、「物体がどのよう
な状態に置かれているか」や「街の活気や雰囲気」といっ
た、より高次のシーン理解は達成されていない。
OpenAIの GPTシリーズに代表される大規模画像言語
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図 1 空間動画像データベース (SAI-DB)の UI。図中の「段階的検
索」が Coarse-to-Fine 型セマンティック検索に該当する。

モデルの急速な発展に伴い、モデルを追加学習させること
なく、シーン動画像からより多くの情報を抽出することが
可能になりつつある。さらに、プロンプト次第で、より人
間の理解に近い形でシーン理解を記述し、特定のタスクに
適したシーン画像の説明文を得ることもできる。(例:街中
の点字ブロックに関する問題点を探るために、「写真中に
写っている点字ブロックの状況を詳述して」というプロン
プトで大規模言語モデルに説明文を生成させる。)

このような、大規模画像言語モデルのシーン理解によっ
て得られた説明文をシーン動画像と共に地理座標系に登録
した空間動画像データベースが SAI-DBである（図 1）[4]。
図 1に示されているように、SAI-DBにはシーン画像をテ
キストクエリする機能があり、クエリ文に合った地点をイ
ンタラクティブに検索することができる。坂口ら (2024) [4]

が実装した手法では、クエリ文が、登録されている説明文
の一部と「完全一致」した地点のみを選択し表示するよう
にしていた。このシンプルな手法でも検索自体は可能であ
るが、同じ情景を思い浮かべていても、クエリ文は個々人
でばらつきがあり、期待するクエリに辿り着くまでに多く
の試行を必要とする場合もある。
一方で、クエリ文のばらつきに対応した、より堅牢な意

味的検索（セマンティック検索）を実現するために、テキ
ストの埋め込みベクトルを作成し、それらの類似度によっ
てデータを取得するシステムが様々な分野で研究されて
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いる [2, 10]。これに倣い、SAI-DBにおいても、クエリ文
や説明文を全て埋め込んでベクトル類似度でクエリする
「曖昧検索」機能を実装したが、説明文が長くなると、埋
め込みベクトルも多義的になり、正確なクエリが困難で
あった。この課題を解決するために、本論文では、いくつ
かの検索システムで用いられている Coarse-to-Fineのアプ
ローチ [3, 9]を採用し、SAI-DBに Coarse-to-Fine型セマ
ンティック検索（「段階的検索」）機能を統合した。

2. 関連研究
杉本 (2020, 2022) [6, 7]らが提案しているムービーマッ

プは、動画像データを地理座標系に登録し、ユーザがマッ
プ上で街中を快適に散策し、没入感のある体験を楽しめる
ようにすることを目的としている。そのためには各交差点
での移動方向をスムーズに接続させる必要があり、近年の
研究では特に、交差点の識別方法に工夫が凝らされている。
2020年の研究では Visual SLAM技術を活用した交差点識
別を実装し [6]、また、2022年の研究では、PDoT法によ
る交差点の自動識別手法が導入され、より効率的かつ精度
の高い交差点識別が可能となった [7]。
一方で、本論文で取り扱う SAI-DBは、動画像を地理座

標系に登録したデータベースという点ではムービーマップ
と同じ分類に属するが、システムの目的が異なる。本論文
では、街中のシーン画像をインタラクティブにテキストク
エリできることに焦点を当てており、ユーザが特定のシー
ンや場所を迅速かつ直感的に検索できる機能を重視して
いる。このように、ムービーマップが快適な街中散策の提
供を主眼としているのに対し、SAI-DBはタスクに応じた
シーン画像の効率的な検索と利用を目的としている点で差
別化されている。
また、Coarse-to-Fineのアプローチを採用したテキスト

クエリの研究として、Text2Pos と Text2Loc が挙げられ
る。Kolmetら（2022）[3]は、テキストクエリから 3D点
群データ内の位置を特定する Text2Posのタスクに取り組
んだ。この研究では、Coarseのステップで、テキストとサ
ブマップの埋め込みベクトル類似度で top-kのサブマップ
を取得し、Fineのステップにおいて、テキストクエリと候
補サブマップ内のオブジェクトをマッチングさせている。
Xiaら（2023）[9]による Text2Locではこれをさらに発展
させ、Fineのステップで、テキスト情報と点群データを異
なるブランチで処理した後に、それらを融合して位置を推
定することでクエリ精度を改善した。
Text2Locと Text2Posの、膨大な地理的データに対する

テキストクエリにおいて、精度と計算量のバランスを取る
ために Coarse-to-Fineを採用している点では、本論文で提
案する Coarse-to-Fine型セマンティック検索と一致してい
る。一方で、Text2Posや Text2Locが正確な地点の特定を
目的としているのに対し、本論文のシステムはタスクに応

じたシーン画像の取得を目的としている。また、Coarseス
テップにおいて、ベクトル類似度を使って top-kの候補を
取得する点では共通しているが、本論文の手法では、Fine

ステップにおいて、取得した top-kのシーン画像とクエリ
文を GPT-4oに渡して適切なものを選択させるため、そも
そも存在しない不適切なクエリを排除することができると
いう点で差別化されている。

3. 提案手法
本論文ではベクトル類似度による top-k検索と大規模画

像言語モデルの VQAを組み合わせた Coarse-to-Fineセマ
ンティックシーン検索を提案する（図 2）。

3.1 SAI-DBに登録されているデータ
SAI-DBには以下のデータが地理情報と共に登録されて

いる。
• 360°カメラで撮影した equirectangular形式のシーン
画像

• 大規模画像言語モデル (GPT-4o)で作成したシーン説
明文

• 大規模言語モデル (text-embedding-3-large)で作成し
たシーン説明文埋め込みベクトル

シーン説明文を作成するときは、equirectangular 形式
のシーン画像を cubemap形式に変換して GPT-4oに渡し
ている。例えば、図 2で示されている説明文としては、以
下のプロンプトで生成した jsonファイルのうち “雰囲気”

の項目を登録されている。なお、実際のプロンプトでは
one-shot 方式で例を与えることにより、出力される json

ファイルの形式を固定している。

あなたの仕事は、360度のパノラマビューから撮影され
た 4つの画像について説明することです。添付画像は、
正面、左、背面、右の視点を示すように切り取られてい
ます。添付画像のシーンについて、下記の項目を json

形式で出力してください。
・シーンの雰囲気を説明してください。
・何をするのに適した雰囲気の場所か説明してください。
・適する項目の度合いを 10 段階でスコア化してくだ
さい。

また、シーン説明文から、OpenAIの text-embedding-3-

largeを使用してシーン説明文埋め込みベクトルを作成し、
ベクトルデータベースに登録した。ベクトルデータベース
としては Spotify社が開発した Voyager [5]を使用した。

3.2 Coarseステップ
ユーザがクエリ文を入力すると、OpenAI の text-

embedding-3-largeを使用してクエリ文を埋め込み、シー
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[𝑥!, 𝑥",・・・𝑥#]
オフィス街の緑豊かな空間にある、⽊陰が広がる⾃転⾞置き場

Coarse: クエリ⽂とシーン説明⽂のベクトル類似度でtop-kまで絞る

画像は、都市部に位置する静かで整然とした通
りを⽰しています。多くの緑があり、⽇陰を提
供する⽊々が並んで・・・

Coarse

[𝑥!, 𝑥",・・・𝑥#]

クエリ⽂ クエリ⽂埋め込みベクトル

360∘カメラで撮影したシーン画像 シーン説明⽂

シーン説明⽂埋め込みベクトル

エンべディング

説明⽂⽣成

エンべディング

Fine: シーン画像とクエリ⽂からGPT-4oがVQA形式で選択

Fine

図 2 Coarse-to-fine 型セマンティックシーン検索の概要

ン説明文埋め込みベクトルとのコサイン類似度で top-kの
シーン画像を取得する。

3.3 Fineステップ
クエリ文とCoarseステップで取得してきたシーン画像を

GPT-4oに渡し、クエリ文と合致する画像を VQA形式で
選択させる。具体的には以下のプロンプトで VQAを行っ
ている。

{クエリ文を代入 }というクエリに一致する画像を選ん
で、クエリと合致する順に並び替えてください。また、
その写真がどうしてクエリと一致すると考えたのか、詳
述してください。クエリに適合しないと考える画像は説
明不要なので回答から除外してください。

3.4 提案手法の優位性
提案手法では、膨大なシーン画像データに対するクエリ

を一定の精度を保ちながら迅速に実行するため、Coarse-

to-Fineアプローチを採用している。特に SAI-DBはイン
タラクティブなシステムであるため、応答速度はユーザエ
クスペリエンスの評価に直結する。シーン画像の説明文が
詳細であることから、埋め込まれるベクトルは多義にわた
り、coarseステップのベクトル類似度だけではクエリの精
度が不十分である。Fineステップにおいて、大規模画像言
語モデルによる VQAを併せて行うことにより、高精度な
クエリを実現した。さらに、Fineステップで明らかに不適
切なシーン画像を除外することができるので、存在しない
状況に対するクエリに対しても堅牢性を持つ。また、Fine

ステップにおいて、シーン画像を選択した理由について大
規模画像言語モデルに説明させることで、選択理由の透明
化を図ることもできる。

4. 実験
4.1 データセット
SAI-DBに登録されているシーン動画像は、バックパック

型のMMS(Leica Pegasus)に 360°カメラ (Insta360 Pro2)

を搭載し、新宿駅周辺の地上および地下街でそれぞれ約
20kmを徒歩または自転車で撮影して取得した。この動画
から、20m間隔で 1595枚のシーン画像データを取得し、
それぞれに対して GPT-4oで説明文生成を行った。

4.2 定性的結果
提案手法で示したプロンプトおよび処理で登録した説明

文に対する、Coarse-to-Fineセマンティックシーン検索の
実行例を図 3に示す。図 3の例では、「オフィス街の緑豊
かな空間にある、木陰が広がる自転車置き場」というクエ
リ文を用いて、Coarseステップで top-k(k = 10)として実
行した。結果として、Fineステップで 3つの画像に絞り込
まれた。
この例は以下の点で、セマンティック検索の成功を示し

ている。
• 高次的な特徴を捉えていること
• 街の雰囲気や特定の特徴を持った駐輪場を理解できて
いること

• Fine検索によって適切に絞り込まれていること
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この画像は、都市部の緑豊かな通りを⽰しています。⾼
層ビルに囲まれた広々とした歩道と、⽊々が茂る静かな
環境が特徴です。歩道は整備されており、⾃転⾞や歩⾏
者が通⾏しています。⾃動⾞の交通量は少なめで、全体
的に落ち着いた印象を受けます。

この画像は、都会のオフィス街の⼀⾓を⽰しています。
⾼層ビルが⽴ち並び、街路は広々としており、歩道には
⽊々が植えられています。また、いくつかの⾃転⾞が駐
⾞されており、⼈々が⾏き交っています。晴天の中、忙
しいながらも整然とした雰囲気があります。

画像は、都市部に位置する静かで整然とした通りを⽰し
ています。多くの緑があり、⽇陰を提供する⽊々が並ん
でいます。建物の⼊り⼝と⾃転⾞置き場も⾒受けられま
す。この場所は清潔で⼿⼊れが⾏き届いており、歩道は
広々としています。

この画像は、都市部の静かな通りを⽰しています。⾼層
ビルに囲まれた歩道には⽊が茂っており、⽊陰が広がっ
ています。歩道には⾃転⾞が駐輪されているエリアもあ
り、都市⽣活と⾃然が融合した環境です。⾞道には通⾏
中の⾞もあり、活気が感じられます。

この画像は、都市部の静かな通りを⽰しています。⾼層
ビルが⽴ち並び、歩道や⾃転⾞道に⽊々が影を落として
います。緑豊かな公園エリアもあり、整備された歩道と
⾃転⾞置き場が整っています。晴れた⽇差しが降り注ぎ、
全体に明るく開放感のある雰囲気です。

この画像は、都市部の緑豊かな歩道を⽰しています。⾼
層ビルが⽴ち並び、整備された歩道にはたくさんの⽊々
があり、⾃然と都市が調和した環境が感じられます。⾃
転⾞が停められるスペースもあり、通⾏⼈や⾃転⾞に
乗った⼈が⾒られます。

この画像は、都市部のビジネス街を⽰しており、⾼層ビ
ルや⾃転⾞が並ぶ駐輪場があります。歩道には緑豊かな
樹⽊と広々としたスペースがあり、ビジネスパーソンが
⾏き交う休⽇の⾵景が⾒られます。

この画像は、都市部のオフィス街の静かな通りを⽰して
います。ビルに囲まれ、道沿いには⽊々や⾃転⾞置き場
が整然と配置されています。歩道は広く、⽯畳が整備さ
れており、全体的に落ち着いた雰囲気があります。通り
には⾼架歩道橋も⾒られます。

この画像は、都市部のオフィス街を⽰しています。広々
とした歩道には⾃転⾞置き場があり、多くの⾃転⾞が駐
輪されています。周囲には⾼層ビルが⽴ち並び、緑豊か
な⽊々が歩道を囲んでいます。⼈々が歩道を歩いている
のが⾒え、バスなどの交通量もあるようです。

この画像は、都市部の静かな屋外スペースを⽰していま
す。周囲に⽊々が⽣い茂り、歩道が広がっているため、
リラックスした雰囲気があります。駐輪場があり、建物
がいくつか⾒られることから、オフィス街の⼀⾓である
可能性があります。道には⼈々が少なく、落ち着いた環
境です。

Coarseステップで取得したtop-10

オフィス街の⼀⾓にあり、緑豊かな⽊々が⽴ち並ぶ中に⾃転⾞置き場が設置されている。
明らかに⽊陰が広がっており、⽊々の緑が豊かであることが確認できる。

⾃転⾞置き場がオフィス街の⼀部で、周囲に豊かな緑があり、⽊陰が多く⾒受けられる。
場所の特性として都市部にありながらも⾃然が感じられる。

⾃転⾞置き場がある場所がオフィス街で、そこに豊かな緑が広がっている。
特に⽊陰が⾃転⾞置き場に影響を与えている様⼦が⾒受けられる。

Fineステップで選択されたシーン画像ベクトルのコサイン類似度

シーン画像説明⽂

選択した理由

図 3 Coarse-to-Fine 型セマンティックシーン検索の例。「オフィス街の緑豊かな空間にある、
木陰が広がる自転車置き場」のクエリ結果。

例えば、Fineで絞られた画像で、選択理由として「特に
木陰が自転車置き場に影響を与えている様子が見受けられ
る」と記述されてものがあり、これは高次的な特徴を捉え
た理想的なクエリである。
一方で、駐輪場に木陰がなく、道端の木陰と混同してし

まっている例も見受けられる。また、Fineステップで選ば
れなかった画像にも、木陰のある自転車置き場が存在して
しまっており、今後の改善が求められる。

5. おわりに
本論文では、SAI-DBに対し、Coarse-to-Fine型セマン

ティックシーン検索を提案・実装した。これにより、ユー
ザはテキストを用いて高精度かつ高速にシーン画像を検索
することが可能となった。評価実験として、新宿駅付近で
撮影されたシーン動画像に基づいたタスクでの例を示した。

今後の課題としては、定量評価を行い、提案システムの性
能をさらに詳しく評価する必要がある。また、登録データ
数の増加に伴うスケーラビリティの検証や、ユーザエクス
ペリエンスの改善も進めていく予定である。
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